Easyflow docs
  • 🚩Introduction
  • Automation
    • 🚀Get Started
    • 🤖Workflows
    • ⚡Run & Invoke
      • Manual
      • Triggers
      • Scheduler
      • WebHook (Instant)
      • Rest API endpoint
      • Transactional vs Queue
      • Online \ Offline
    • 🎶Workflow orchestration
      • Step operations
      • Step configuration
      • Data mapping
    • 👣Steps and conditions
      • Multi steps
      • Parallel steps
      • Conditions
      • Loop & iteration
    • 🎲Dynamic content
      • Variables
      • Function expressions
    • 📦Schema
      • Schema builder
      • Auto schema detection
      • Use cases
    • 🐞Debugging
  • Visualisation
    • 🚀Get Started
    • 🧮Visual designer
      • Dashboard designer
      • Card designer
    • 🔌Datasources
      • Partner connectors
      • Existing connections
      • URL (CSV or JSON)
      • Data pipeline (Flow)
      • Data-blocs
      • Push to visualiser
    • 🎻Data pivoting
    • 📈Chart types
    • 🎨Customisation
      • Card appearance
      • Theme & branding
    • 🤝Preview & sharing
      • URL share
      • Scheduled snapshots
      • Send to TV
      • Preview mode
    • ⌛Refresh settings
  • Data Pipeline
    • 🚀Get Started
    • 🗞️Pipeline (ETL)
    • ⚡Automated runs
    • 🌻Transformation
      • Average by group
      • Change text casing
      • Clean data
      • Combine columns
      • Combine tables
      • Compare dates
      • Convert array of objects to array of arrays
      • Count by group
      • Extract text from column
      • Fill in blanks
      • Filter rows
      • Find and replace
      • Find maximum by group
      • Find min/max per row
      • Find minimum by group
      • Flatten rows
      • Format dates
      • Format numbers
      • Insert date & time column
      • Insert growth rate column
      • Insert if/else column
      • Insert if/else blank column
      • Insert math column
      • Insert row numbers
      • Insert rows
      • Insert running total column
      • Insert text column
      • Limit rows
      • Merge duplicate rows
      • Pivot columns
      • Remove duplicate rows
      • Rename columns
      • Select columns
      • Reorder columns
      • Sort rows
      • Split column
      • Stack tables
      • Sum by Group
      • Unpivot columns
      • Use regex
    • 🕶️Preview results
    • 🎻Orchestration
    • 📤Output
      • For Google Datastudio
      • For Easyflow visualisation
      • Array of arrays
      • Array of objects
  • Connectors
    • 🚀Get Started
    • 🌟Built-in Connectors
      • CSV
      • Data bloc
      • Data mapper
      • Delay (Wait)
      • HTTP
      • For Loop (Iteration)
      • Functions
        • Array functions
        • Conditions
        • Convertors
        • General functions
        • Date & Time
        • Filters
        • Math functions
        • Object functions
        • Operators
        • Text functions
      • Receive emails | IMAP
      • RSS
      • Send emails | SMTP
      • SQL Syntax
      • Trasform
      • Variables Setter
      • WebHook
      • Workflow (Sub flow)
    • 🌠Partner connectors
  • System
    • 👫Teams
    • 🙂Profile
    • 🧑‍💻Monitoring
    • 🔋Account Usage
    • 💵Billing and Pricing
Powered by GitBook
On this page
  • Input/output
  • Settings

Was this helpful?

  1. Data Pipeline
  2. Transformation

Count by group

PreviousConvert array of objects to array of arraysNextExtract text from column

Last updated 2 years ago

Was this helpful?

The Count by group step counts the number of rows that exist for each unique value in one or more columns. This step is similar to the COUNTIF function in Excel.

Input/output

Our input data is a list of Sales.

We want to know how many sales we have available at different product. After connecting the data to this step and setting it up, it gives us the output data of the unique product name per number of time sold.

Settings

This step will count every row as unique and display a "Count Products" column with the same value as the number of rows in your input table.

To customize these settings, you'll first Pick the dataset, then specify a column or multiple columns you'd like to count unique values for. Then, you'll provide a name for that new column that will display the count of unique values. In the example above, we wanted to count unique product name per number of time sold, so we specified ProductName in the Group by column(s) and named the new column "Count Products".

We can add multiple columns if we want to count unique values for the combinations of those column values.

🌻