Easyflow docs
  • 🚩Introduction
  • Automation
    • 🚀Get Started
    • 🤖Workflows
    • ⚡Run & Invoke
      • Manual
      • Triggers
      • Scheduler
      • WebHook (Instant)
      • Rest API endpoint
      • Transactional vs Queue
      • Online \ Offline
    • 🎶Workflow orchestration
      • Step operations
      • Step configuration
      • Data mapping
    • 👣Steps and conditions
      • Multi steps
      • Parallel steps
      • Conditions
      • Loop & iteration
    • 🎲Dynamic content
      • Variables
      • Function expressions
    • 📦Schema
      • Schema builder
      • Auto schema detection
      • Use cases
    • 🐞Debugging
  • Visualisation
    • 🚀Get Started
    • 🧮Visual designer
      • Dashboard designer
      • Card designer
    • 🔌Datasources
      • Partner connectors
      • Existing connections
      • URL (CSV or JSON)
      • Data pipeline (Flow)
      • Data-blocs
      • Push to visualiser
    • 🎻Data pivoting
    • 📈Chart types
    • 🎨Customisation
      • Card appearance
      • Theme & branding
    • 🤝Preview & sharing
      • URL share
      • Scheduled snapshots
      • Send to TV
      • Preview mode
    • ⌛Refresh settings
  • Data Pipeline
    • 🚀Get Started
    • 🗞️Pipeline (ETL)
    • ⚡Automated runs
    • 🌻Transformation
      • Average by group
      • Change text casing
      • Clean data
      • Combine columns
      • Combine tables
      • Compare dates
      • Convert array of objects to array of arrays
      • Count by group
      • Extract text from column
      • Fill in blanks
      • Filter rows
      • Find and replace
      • Find maximum by group
      • Find min/max per row
      • Find minimum by group
      • Flatten rows
      • Format dates
      • Format numbers
      • Insert date & time column
      • Insert growth rate column
      • Insert if/else column
      • Insert if/else blank column
      • Insert math column
      • Insert row numbers
      • Insert rows
      • Insert running total column
      • Insert text column
      • Limit rows
      • Merge duplicate rows
      • Pivot columns
      • Remove duplicate rows
      • Rename columns
      • Select columns
      • Reorder columns
      • Sort rows
      • Split column
      • Stack tables
      • Sum by Group
      • Unpivot columns
      • Use regex
    • 🕶️Preview results
    • 🎻Orchestration
    • 📤Output
      • For Google Datastudio
      • For Easyflow visualisation
      • Array of arrays
      • Array of objects
  • Connectors
    • 🚀Get Started
    • 🌟Built-in Connectors
      • CSV
      • Data bloc
      • Data mapper
      • Delay (Wait)
      • HTTP
      • For Loop (Iteration)
      • Functions
        • Array functions
        • Conditions
        • Convertors
        • General functions
        • Date & Time
        • Filters
        • Math functions
        • Object functions
        • Operators
        • Text functions
      • Receive emails | IMAP
      • RSS
      • Send emails | SMTP
      • SQL Syntax
      • Trasform
      • Variables Setter
      • WebHook
      • Workflow (Sub flow)
    • 🌠Partner connectors
  • System
    • 👫Teams
    • 🙂Profile
    • 🧑‍💻Monitoring
    • 🔋Account Usage
    • 💵Billing and Pricing
Powered by GitBook
On this page
  • Input/output
  • Settings

Was this helpful?

  1. Data Pipeline
  2. Transformation

Average by group

PreviousTransformationNextChange text casing

Last updated 2 years ago

Was this helpful?

The Average by group step calculates the average of all values in one or more columns. This step is similar to the AVERAGEIF function in Excel.

Input/output

Our input data has number of sales orders showing how many quantities of a particular product was sold at a particular date.

After connecting data to this step and setting it up, it gives us the output data of what the average quantity sales amount per unique product.

Settings

After connecting steps, the transform connector, Average by group option, Pick the dataset (like "List of sales"), the desired column(s) (like "ProductName" - case sensitive) and a the columns that you want to calculate the average per product row (like "SalesAmount").

You can optionally apply this to only to one column or many columns separated by comma. We'd recommend using the option that requires fewer column selections since this saves you time.

🌻